
Изследователи от Google създадоха нов модел за прогнозиране на времето, който съчетава машинно обучение с конвенционални метеорологични техники. Очакванията на учените са, че този метод има потенциал да дава по-точни прогнози и то с няколко пъти по-ниски разходи от настоящите, пише изданието на Масачузетския технологичен институт MIT Technology Review.
Моделът, наречен NeuralGCM, преодолява част от разделението на мненията, което нарасна през последните няколко години.
Въпреки че новите техники за машинно обучение, които предсказват времето чрез учене от минали данни от години, са изключително бързи и ефективни, те се затрудняват с дългосрочните прогнози. Моделите на общата циркулация, от друга страна, които доминират в прогнозирането на времето през последните 50 години, използват сложни уравнения за моделиране на промените в атмосферата и дават точни прогнози, но са изключително бавни и скъпи за изпълнение.
Експертите са разделени по въпроса кой инструмент ще бъде най-надежден в бъдеще. Новият модел от Google обаче се опитва да комбинира и двете техники.
"Това не е борба на конвеционалната физика срещу AI. Това е физика и AI заедно“, казва Стефан Хойер, изследовател на AI в Google Research и съавтор на проучването.
Системата все още използва конвенционален модел, за да изработи някои от големите атмосферни промени, необходими, за да се направи прогноза. След това включва AI, който се справя по-добре именно там, където по-големите модели "издъхват" – обикновено за прогнози в мащаби, по-малки от около 25 километра, като тези, които се занимават с облачни образувания или регионалния микроклимат.
"Там инжектираме AI много селективно, за да коригираме грешките, които се натрупват в малки мащаби", казва Хойер.

Резултатът е модел, който може да произвежда качествени прогнози по-бързо с по-малко изчислителна мощност. Те казват, че NeuralGCM е толкова точен, колкото прогнозите за един до 15 дни от Европейския център за средносрочни прогнози за времето (ECMWF), който е партньорска организация в изследването.
Но истинският потенциал на технология като тази не се крие в по-добрите метеорологични прогнози на регионално ниво, а в по-мащабни климатични събития, които са непосилно скъпи за моделиране с конвенционални техники. Възможностите могат да варират от предсказване на тропически циклони до моделиране на по-сложни климатични промени, които ще се случат след години.
Симулацията на земното кълбо отново и отново или за дълги периоди от време е изключително интензивно от изчислителна гледна точка, което означава, че дори и най-добрите климатични модели са затруднени от високите разходи.
Моделите, базирани на AI, са много по-компактни. Веднъж обучени, обикновено на 40 години исторически метеорологични данни от ECMWF, модел за машинно обучение като GraphCast на Google може да работи на по-малко от 5500 реда код, в сравнение с близо 377 000 реда, необходими за модела от Националната администрация за океаните и атмосферата.
"Не е нужно да изхвърляме цялото знание, което сме натрупали през последните 100 години, за това как работи атмосферата. Всъщност можем да го интегрираме със силата на AI и машинното обучение“, казват още авторите на проучването.
NeuralGCM ще бъде платформа с отворен код. Хойер се надява учените по климата да я използват в своите изследвания, но моделът може да представлява интерес и за хора и организации извън академичните среди. Търговците на суровини и фермерите плащат най-скъпо за прогнози с висока разделителна способност, а моделите, използвани от застрахователните компании, за продукти като застраховка срещу наводнения или екстремни метеорологични условия, се затрудняват да отчетат въздействието на изменението на климата.
Новините на Darik Business Review във Facebook , Instagram , LinkedIn и Twitter !
ИНТЕРИОРНИ ВРАТИ HÖRMANN
Калкулатори
Най-ново
Круизна линия отмени 41 плавания
11.07.2025Altcoins.bg: Биткойнът е новата форма на капитал в дигиталната ера
11.07.2025Куфърът ви е 58 пъти по-мръсен от седалка в обществена тоалетна
11.07.2025Контрабанда от България и Турция: Ръст на търговията с незаконни пестициди в Европа
11.07.2025Европейски острови предлагат 30 маршрута за еднодневни пътувания с кола, но дестинациите са тайна
11.07.2025Европейските икономики, които щатските мита ще засегнат най-силно
11.07.2025Прочети още
Атанас Чобанов: Бухалките на Пеевски няма да излязат в отпуска
darik.bgД-р Ивайло Митковски: Срещу кмета на Варна има съдебен произвол!
darik.bgТакса над 28 000 лв., за да учиш химия в Софийския университет! Как така!?
darik.bgИграл срещу Неймар и Мбапе пред трансфер в Ботев Пловдив
dsport.bgБерое взе предсезонната Битка за Тракия срещу Ботев Пловдив насред „Колежа“
dsport.bgКаква козметика да използвате при бременност
9meseca.bg